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Abstract— On time delivery is a very important issue for customers in supply chain management. The customer’s order includes more 

than one item at all times. How to finish the order on time, so that all items in the same order will be ready for delivery, is an important 

task. Therefore, this paper considers the dynamic demand lot-sizing problem (DLSP) and the customer-ordering problem (COP) 

together, namely DLSCOP, dynamic lot sizing problem with customer order considering. DLSP focuses on the deterministic time-varying 

batch ordering lot-sizing problem with backorders. The COP consists of a set of items that must be shipped as one batch at the same time.  

This work applies a modified particle swarm optimization (mPSO) to solve the problem. Two popular algorithms, Silver-Meal (SM) 

algorithm and Wagner-Whitin (WW) algorithm, for benchmarking are modified and two heuristics MSM, MWW are developed for 

solving DLSCOP. The genetic algorithm (GA) will be included in the simulation experiment for comparing. The simulation test 

considers 128 scenarios and 100 repetitions. In the statistical analysis, the mPSO performance is better than GA, MSM and MWW. The 

decision based on MPSO saves more than 10-50% cost, especially in those scenarios with long term, multiple items, and high expense 

rate (ordering cost and holding cost).  
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I. INTRODUCTION 

In supply chain management, customer order should be 

delivered on time for the customer to proceed their processes 

or delivery to their customer. Customer order always orders 

more than one items and those items should be delivery at the 

same ship for fulfilling customer. This kind of problem 

namely COP, customer order problem, is very common in 

supply chain management. Customers issue an order based 

on their own order. The order will order more than one items 

for fulfilling their customer’s demand. All items in the same 

order require same time delivery, and the order is not ready 

for delivery if any item in the same order is not ready for 

shipment. This type of problem is a typical COP, like as 

figure 1. Furthermore, lot sizing problem is a traditional 

problem for inventory and production management. DLSP is 

the dynamic lot sizing problem. DLSP focuses on the 

deterministic time-varying batch ordering lot-sizing problem 

with backorders. The objective is to determine the optimum 

ordering plan, i.e. minimizing the total cost, to satisfy a set of 

known demands over a specific planning horizon.  

Plastic parts

Hardware parts

Electronic parts

PC assembly

Customers

Assembling PCs based on 

customers’ order for 

on-time delivery

Fabricating and delivering the parts 

based on customers' demand 

(orders) for their assembly schedule

Figure 1. Customer ordering problem in the supply chain of 

personal computer 

This research investigates the applicability of particle 

swarm optimization (PSO) on dynamic lot sizing problem 

with customer order considering, namely DLSCOP. 

DLSCOP focus on two important problems in supply chain 

management, that is DLSP and COP. DLSP is the dynamic 

lot sizing problem. COP represents for the customer-ordering 

problem. In a traditional dynamic lot-sizing problem, the 

seller makes the purchasing decision based on the customers’ 
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order. In practice, the customer order includes more than one 

item in the same order. All items in the same order require 

delivery in the same shipment for proceeding to the next 

fabrication step. Hence, the dynamic lot sizing decision 

should consider the COP.  

Figure 2 is a typical example of DLSCOP. There are some 

orders in the same period. All the items’ total demand at each 

period consists of the demand of some orders. In period 1, the 

total demand of item 1 is 10, consisting with the demand of 

order 1, 2, 3 for item 1. The items in the same order should be 

delivered at the same ship. DLSP tries to find a suitable 

purchasing decision for minimizing total inventory cost. 

When the DLSP considers the customer order problem, the 

purchasing decision will be more complex. This work 

develops a linear programming model to describe the 

DLSCOP and developed a modified particle swarm 

optimization, mPSO, for sloving the problem. Genetic 

algorithms (GA) and some heuristics methods are considered 

for comparing. 

Section 2 discusses the relative researches of COP and 

DLSP. Section 3 presents the problem formulation of 

DLSCOP and the LP model with a brief analysis. Section 4 

discusses the PSO approach for solving DLSCOP and section 

5 presents the computation experiment. Sections 6 discuss the 

analytical result and have some discussion. 

 

 
Figure 2. the example of dynamic lot sizing problem with customer order considering 

II. LITERATURE REVIEW 

A. DLSP 

Lot sizing models determine the optimal timing and level 

of purchasing or production. One end of the spectrum 

includes the continuous time scale, constant demand, and 

infinite time horizon lot sizing problems. In this category we 

find the famous economic order quantity model (EOQ) and 

the economic lot scheduling problem (ELSP). The other end 

of this spectrum includes the discrete time scale, dynamic 

demand, and finite time horizon lot sizing models (Jans and 

Degraeve, 2007). Studies typically refer to this type of 

planning as dynamic lot sizing and it is the main subject of 

this paper. A number of studies have introduced the lot-sizing 

problem. De Bodt et al. (1984) and Bahl et al. (1987) 

presented earlier reviews. Jans and Degraeve (2007) provided 

a wider survey of meta-heuristic applications in dynamic lot 

sizing. Robinson et al. (2009) updated a 1988 review of the 

coordinated lot-sizing problem and complemented recent 

reviews on the single-item lot-sizing problem and the 

capacitated lot-sizing problem, providing a state-of-the-art 

review of the research and future research projections. 

Adetunji and Yadavalli (2012) discussed the reducing of the 

batch sizes of products in production network through the 

utilization of the idle time. Kim and Lee (2013) considered a 

dynamic inbound ordering and shipment scheduling problem 

for lot sizing problem. These studies have presented a 

complete framework for the lot-sizing problem and most 

have discussed the model and algorithms. Different types of 

lot-sizing problems result from certain parameters, such as 
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static/dynamic demand, incapacitated/capacitated, lot sizing, 

backorder, setup cost/purchasing cost, etc. However, none of 

the researches in our review focused on the lot-sizing 

problem, considering the scenario of the customer order 

problem.  

One of the most commonly used suboptimal algorithms for 

the methodology for solving DLSP, is the Silver-Meal (Silver 

and Peterson, 1985). The original SM algorithm finds the 

number of periods for minimizing the total inventory costs 

per period and then orders the exact quantity to cover the 

demand for those periods. Wagner and Whitin (1958) 

developed a dynamic programming algorithm to obtain the 

optimum solution to a simpler version of the lot-sizing 

problem, and developed several extensions of the original 

WW algorithm over time. However, in the review of Jans and 

Degraeve (2007), and Robinson et al. (2009), the lot-sizing 

problems are very complex to find the optimal solution. They 

presented many meta-heuristics for dynamic lot sizing, such 

as tabu search (TS), simulated annealing (SA), and genetic 

algorithms (GA).  

Several authors have applied GAs to various versions of 

the lot-sizing problem.  Ozdamar and Birbil (1998) utilized 

GA, simulated annealing (SA), and tabu search to solve the 

capacitated lot sizing problem on parallel machines. Hung 

and Chien (2000) also utilized GA, SA, and tabu search to 

solve the multi-class multi-level capacitated lot-sizing 

problem. Khouja et al. (1998) investigated using GAs to 

solve the economic lot size-scheduling problem using the 

basic period approach. Prasad and Chetty (2001) applied GAs 

to multi-level lot sizing and observed under a rolling horizon 

environment. The performance of GAs is superior to popular 

heuristics. 

 Staggemeier et al. (2002) presented a hybrid GA to solve a 

lot sizing and scheduling problem by minimizing inventory 

and backlog costs of multiple products on parallel machines 

with sequence-dependent set-up times. Basnet and Leung 

(2002) presented a multi-period inventory lot-sizing scenario, 

with multiple products and multiple suppliers. Sarker and 

Newton (2002) developed a GA code with three different 

penalty functions to determine optimal batch sizes for 

products and a purchasing policy for associated raw materials. 

They compared GA results to optimal solutions, and the GA 

with a static penalty function obtained the global optimum 

100% of the time. Moon et al. (2002) developed a hybrid GA 

to address the lot-scheduling problem with time-varying lot 

sizes. A numerical experiment showed that the hybrid GA 

performed better than other heuristic methods. Shittu (2003) 

used GAs to address the lot-sizing problem with batch sizing 

and compared their performance to that of the SM.   

B. COP 

The customer order problem (COP) considered orders 

consisting with a set of items that must be shipped as one 

batch before the due date. It’s a specific problem in the 

supply chain management. COP will be very important for 

the cooperation with those supply chain’s members. The 

purchase order specifies the composition of an order. The 

company may not ship the order until all the items in the 

order are completed and ready for delivery. Figure 1 is an 

example of the personal computer assembly. 

In the review of Hsu and Liu (2009), only a few studies 

focused on the customer order-scheduling problem. Most of 

the studies focused on the single machine or parallel machine 

system and tried to find an optimal solution. Julien and 

Magazine (1990) assumed a job-dependent setup time for 

two different types of jobs. They assumed a dynamic 

programming (DP) algorithm for the single machine problem 

with only two types of jobs and a fixed batch processing 

order. Coffman et al. (1989) considered the same problem as 

that of Julien and Magazine (1990), assuming a non-fixed 

batch processing order. In addition, Baker (1988), Gupta et al. 

(1997), and Gerodimos et al. (2000) also focused on the 

single machine case. Yang (2005) introduced a relatively new 

class of the COS case for parallel machines. He proposed an 

optimal solution procedure for each of several problems with 

different types of objectives, job restrictions, and machine 

environments. Yang and Posner (2005) considered the COS 

case in four jobs dispatched in batches. They presented a 

heuristic for the problem, and found a tight worst case bound 

on the relative error. Ahmadi et al. (2005) and Wang and 

Cheng (2007) considered the COS case for m dedicated 

facilities and n orders, in which each job only needs one 

operation at a dedicated facility. They showed that the 

problem is unary NP-hard, and proposed a heuristic method 

to minimize the total weighted order completion time and 

analyzed a worst-case scenario. Daganzo (1989) and 

Peterkofsky and Daganzo (1990) focused on the crane 

scheduling problem, which is simply another kind of COS 

problem with a parallel machine. In their discussions, jobs 

consist of independent, single stage, preemptible tasks. The 

objective function is minimizing weighted tardiness. 

Daganzo (1989) applied the weighted shortest processing 

time first rule to obtain optimal solutions for some special 

cases. Peterkofsky and Daganzo (1990) developed a 

branch-and-bound solution procedure. However, they did not 

provide a theoretical basis for their method. 

Blocher et al. (1998) dealt with the COS problem in a 

general job shop consisting of six machines. Theirs is the first 

simulation study using the customer order environment. They 

specifically compared the dispatching rules from past 

job-based studies to rules adapted to include order 

characteristics. They divided performance measures into two 

parts: measures involving order flow time and measures 

involving due dates. The order flow-time measure is similar 

to the common job flow-time measure, except for the fact that 

the flow time is based on order parameters (groups of jobs). 

The due date measures are based on average tardiness and 

proportion tardy. Of the sixteen dispatching rules tested, four 

simple rules dominate all others. Those rules consider order 

characteristics, namely order-based rules, and perform better 
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than their job-based counterparts perform.  

Hsu and Liu (2009) discussed reducing the stock level of 

finished goods and improving delivery efficiency for the 

COP in the job shop. The main topic focused on how to 

control the finished time of all jobs in the same order in a 

normal job shop.  

Given the discussion above, DLSP is one of the key 

problems in production planning, inventory management, 

and supply chain management. The purchasing decision is a 

very important issue, especially in cooperation with supply 

chain members. Studies need to consider how to make a 

quality decision for improving whole supply chain 

performance for competition advantage. COP is also another 

popular issue in supply chain management. An 

order-oriented decision is very important for fulfilling the 

demand of final customers in supply chain management. 

There is not any research discuss DLSP considering with 

COP in our reviewing.  This paper deals with the dynamic 

lot-sizing problem considering the order-oriented decision by 

focusing on the DLSP with COP, namely DLSCOP. 

III. PROBLEM FORMULATION 

This research focused on the DLSP considering COP, 

namely DLSCOP. DLSCOP will be defined by a nonlinear 

programming model in the section. Firstly, there are some 

assumptions for the DLSCOP should be described as 

following: 

1. The demand is variable and deterministic. 

2. Order quantities must be integer multiples of a 

constant batch size. No other limits are imposed on the 

size of the order. 

3. Cost factors are time independent. 

4. Replenishment is instantaneous. 

5. Back orders are only allowed to make up for quantity 

discrepancies that result from batch ordering. 

6. An order must be placed in the first period. 

7. All items ordered in the same order should be 

delivered at the same period. Shortages of any item 

will backorder the entire order.  

The following notations are used for developing the model. 

cj: batch size of item j 

dijt: demand of item j of order i at period t.  

g: backorder cost per unit per period 

h: holding cost per unit per period 

M: a large number 

p: ordering cost   

T: the planning horizon 

IIjt: independent inventory level of item j at the end of 

period t, 

DIjt: dependent inventory level of item j at the end of 

period t, 

wjt: positive Inventory level of item j at the end of period k. 

wjt = max(0,IIjt+DIjt ), 

xjt: a decision variable that is a integer multiple of the batch 

size lending the quantity made or ordered of item j in period t, 

yjt: Boolean variable to assign the ordering cost of item j in 

period t, 

IBjt: independent backorder quantity of item j at the end of 

period t, IBjt= max (0, -IIjt),  

DBjt: dependent backorder quantity of item j at the end of 

period t, DBjt=max (0, - DIjt), 

zjt: backorder quantity at the end of period t, zjt=max (0, 

IBjt+DBjt), 

yjt: Boolean variable to assign the setup/ordering cost of 

item j in period t,  

uijt: Boolean variable to assign the dependent inventory 

level of item j of order i in period t,  

vijt: Boolean variable to assign the dependent backorder of 

item j of order i in period t.  

kijt: Boolean variable to check dijt will be fulfilled (not 

become backorder) or not.  

Using the notations above, the mathematical formulation 

of the problem can be written as follows: 

Minimize: 
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The objective function (1) minimizes total ordering, 

holding, and backordering cost over time. Constraint (2) 

models the flow conservation in period t. Constraint (3) and 

(6) model the total of dependent inventory/backorder at 

period t. Constraint (4) limits backorders to compensate for 

fixing quantities within c only. Constraint (5) models the total 

independent backorder at period t. Constraints (7) and (10) 

force yjt to zero or one to ensure only charging setup/ordering 

cost when making an order. Constraints (8), (9), (11), and (12) 

model the dependent inventory and dependent backorder 

based on the definition of the customer-ordering problem. 

Constraint (13) sets the initial inventory level to zero. 

Constraint (15) ensures making an order in the first period. 

Finally, constraints (14), (16), and (17) ensure that order, 

carryover, and backorder quantities are all non-negative. 

IV. MODIFIED PARTICLE SWARM 

OPTIMIZATION 

PSO, particle swarm optimization, was first introduced by 

Kennedy and Eberhart (1995) as an optimization method for 

nonlinear functions with continuous variables. The initial 

intention of PSO was to simulate social behavior of flocking 

birds searching for food by means of exchanging knowledge 

among flock members. By applying simple formulas, 

Kennedy and Eberhart developed an optimization algorithm 

that mimics this knowledge sharing. Each individual in the 

flock was represented by a point in a two-dimensional space, 

and future movement of each point in the search space is 

determined using a combination of previous experience of 

the individual, and of other individuals in its neighborhood 

group (Kennedy and Eberhart, 1995). PSO simulates the 

behavior of birds flocking. If there has a group of birds are 

randomly searching for food in an area. There is only one 

piece of food (target) in the area. Not all the birds know 

where the food is. So what is the best strategy to find the food? 

The effective one is to follow the bird which is nearest to the 

food (Hu, 2002). 

PSO searches optimal solutions by individual and group 

experiences; however, the solution of the optimization 

problem may not come from previous solutions. Certain 

parameters need to be adjusted and random variables will be 

put in to distort the optimum solution (Eberhart & Shi, 2001). 

An advantage of PSO is that these particles remember the 

best position that they have seen. Members of a swarm 

communicate better positions to each other and based on this 

they can adjust their own position and velocity. Schutte and 

Groenwold (2005) proposed that each agent’s search velocity 

changes as a random function of the distance between a point 

and a local best, and the distance between the point and the 

global best.  

Each individual in the PSO algorithm is called a “particle”. 

Each particle is subject to a movement in a multidimensional 

space which it remembers. Particles have memory, and thus 

would retain part of their previous state. While there are no 

restrictions for particles to know the positions of other 

particles in the multidimensional spaces, they can still 

remember the best positions they have ever had. Each 

particle’s movement is the composite of an initial random 

velocity, two randomly weighted influences: individuality 

(the tendency to return to the particle’s best previous 

position), and sociality (the tendency to move towards the 

neighborhood’s best previous position). All of the particles 

have fitness values which are evaluated by the fitness 

function to be optimized. Each particle has two main 

characteristics: velocity and position. 

The PSO heuristic described above is applied to 

continuous optimization. However, because of the wide 

variety of optimization problems that involve discrete 

variables, Kennedy and Eberhart (1997) introduced a discrete 

binary version of the heuristic. In the discrete version of PSO, 

solutions are represented by a string of binary bits. The 

velocity of a particular bit is defined as the probability that it 

will take a value of one. Accordingly, if the velocity is equal 

to 0.1, then there is a 10% chance of the bit taking a value of 

one, and 90% chance of it taking a zero value in the next 

iteration. (Kennedy and Eberhart 1997). This means that each 

bit in particle is treated separately. Gaafar and Aly (2008) 

applied PSO to traditional dynamic lot sizing with batch 

order. In their research, PSO outperformed both the MSM 

and the GA by producing the lowest cost solution. We will 

introduce PSO for solving DLSCOP for comparing with GA 

and traditional methodologies WW and SM. 

In the research, a modified PSO (mPSO) has been modeled 

for solving DLSCOP. A example of binary solution for 

DLSCOP is presented on figure 3. In figure 2, the example of 

DLSCOP, the total demand of item 1, 2, 3 are listed for each 

period. Figure 3 is an example of purchasing decision for the 

example for item 1, 2, 3. The value of a bit will be 0, 1, and, 2. 

‘1’ and ‘2’ represented an order is placed in the 

corresponding period with a quantity that would satisfy its 

own demand and the demand of all subsequent periods with a 
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corresponding ‘0’ bit value. The difference between ‘1’ and 

‘2’ is related to the batching size. ‘1’ will order more than real 

demand, namely sufficiency purchasing (SP). ‘2’ will order 

less than real demand, namely insufficiency purchasing (IP). 

If the batch size is 6, in period 1, item 1 will purchase for 

period 1-3. The total demand of item 1 for period 1-3 is 21 

(10+8+3=21, figure 2), and the purchasing quantity will be 

24 (sufficiency purchasing). The next purchasing decision 

will make in period 4. It’s insufficient purchasing for period 

4-6. The total demand is 25 (9+12+4=25, figure 2) and the 

purchasing quantity will be 24 (6*4=24). 

Binary decision for item1 (period 1-10) Binary decision for item2 (period 1-10) Binary decision for item3 (period 1-10)

Sufficient purchasing at 

period 1 for the demand 

from period 1-3.

Insufficient purchasing at 

period 4 for the demand from 

period 4-6.
 

Figure 3. an example of the purchasing decision for DLSCOP 

The flowchart for mPSO dealing with DLSCOP is showed 

on figure 4. Those steps are described following: 

Step1: generate a number of random solution

Step2: grouping the initial solution to ten groups

Step3: calculate the quality (velocity) of each 

particle position 

Step4: using the sigmoid function to 

transforming the velocity

Step 5: cost calculation and sufficient and 

insufficient checking

Step 6: update those particle position in each 

group

Start

End

The terminal condition 

Has been reached or not ?

 
Figure 4. the flowchart of mPSO for DLSCOP 

step 1. Generate a number of random solution 

mPSO is applied by first generating a number of 

random solutions (or positions of particles) in the 

solution space. The solution will be represented by a 

serial of modified binary string. Each bit in the 

string represented a single period in a T period 

planning horizon. Figure 3 is an example of the 

binary string solution for DLSCOP. It will be 

different depend on the number of items and periods. 

There are 100 solutions generated for analyzing in 

the research. 

step 2. Grouping the initial solution to ten groups 

In PSO heuristics, the initial solution should be 

grouped. The group (neighborhood) can be defined 

in many ways. In the paper, we will use overlapping 

groups applied in Gaafar and Aly (2008). All the 

initial solutions will be numbered. Each group will 

have ten solutions. Solution 1 to 10 assigns to group 

1. Group 2 is solution 2-11, and so on.  

step 3. Calculate the quality of each particle position 

(velocity) 

The quality of each particle position (velocity) is 

evaluated based on the object function (total cost). 

To proceed from iteration k to the next iteration k+1, 

velocity of a particle i is calculated using the 

equation (Kennedy and Eberhart, 1997): 

 𝜈𝑘+1 
𝑖 = 𝜐𝑘

𝑖 ∗ (𝑝𝑘
𝑖 − 𝑠𝑘

𝑖 ) + 𝑟2 ∗ (𝑝𝑘
𝑔

− 𝑠𝑘
𝑖 )  (1) 

The new position of the particle is obtained as 

follows, 

𝑠𝑘+1
𝑖 = 𝑠𝑘

𝑖 + 𝑣𝑘+1
𝑖    (2) 

𝑣𝑘
𝑖 : Velocity of particle i in the current iteration k. 

𝑝𝑘
𝑖 : The best solution that particle i reached 

throughout iterations 1, 2,…, k. 

𝑝𝑘
𝑔

: The best solution that the group has reached 

throughout iterations 1, 2,…, k. 
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𝑠𝑘
𝑖 :Particle i position in the current iteration k. 

𝑠𝑘+1
𝑖 : Particle i position in the next iteration k+1. 

r1 and r2: Uniformly distributed random numbers 

generated between 0 and 1. 
step 4. Using the sigmoid function to transforming the 

velocity 

In the DLSCOP, the variables are discrete binary. 

The PSO heuristic described above is applied to 

continuous optimization. For our problem, we will 

modify the binary version of PSO heuristics 

introduced by Kennedy and Eberhart (1997). The 

velocity of a particular bit is defined as the 

probability that it will take a value of one. 

Accordingly, if the velocity is equal to 0.1 then there 

is a 10% chance of the bit taking a value of one, and 

90% chance of it taking a zero value in the next 

iteration k+1 (Kennedy and Eberhart, 1997). This 

means that each bit j in particle i is treated separately. 

The velocity calculating from the equation at step 3 

should be modified for getting the probability in the 

binary version of PSO. A sigmoid function will use 

for the transforming described following: 

𝑠𝑖𝑔(𝑣) =
1

1+𝑒−𝑣           (3) 

Where v is the velocity calculated from (1). 

If 𝑟 < 𝑠𝑖𝑔(𝑣𝑘+1
𝑖,𝑗

), then 𝑠𝑘+1
𝑖,𝑗

=1       (4) 

Else 𝑠𝑘+1
𝑖,𝑗

=0     

Where r is generated from a uniformly distribution 

between 0 and 1, 𝑣𝑘
𝑖,𝑗

 and 𝑠𝑘
𝑖,𝑗

  represented for the 

velocity and the position of bit j of particle i in the 

iteration k separately.  

step 5. Cost calculation and SP and IP checking 

The cost of those purchasing decision getting from 

those new positions of those particles generating 

from step 3-4 will be calculated. And SP or IP check 

will perform for each bit with the value of 1 (SP). If 

the cost of IP is less than the cost of SP, the value of 

the bit will changes from 1 to 2.  

step 6. Update those particle position in each group 

At step 3-5, new positions of those particles in each 

group have been updated. The best good one of each 

group and the best one of all the particles will be 

updated, too. I will use for calculating the velocity 

for next iteration. 

step 7. Repeat step 3-6 until the terminal condition has been 

reached  

Step 3 to 6 will be repeated for improving the quality 

of solution. At least 300 iterations will run for each 

special type of problem.  

V. COMPUTATIONAL EXPERIMENTS 

The computational experiment considers five factors. Each 

factor has two values for the evaluation test. The five factors 

are: item types3, 6, number of orders per period (5, 10), the 

demand pattern (constant, seasonal), batch size (6, 24), the 

ratio of the ordering cost to the carrying cost (1, 8), the ratio 

of the carrying cost to the backorder cost（1,8）, and the length 

of the planning horizon（10, 20）. Demand pattern generated 

from the model developed from Gaafar & Choueiki (2000). 

Constant demand pattern model generated from (5): 

d𝑖𝑗𝑡 = α + 𝜀𝑖𝑗𝑡      1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑡 ≤ 𝑇 (5) 

Where, dijt is the demand in period t for order i item j, T is 

the number of periods in the plan (factor E), m is the number 

of orders at period t, n is the number of items, αis a constant 

generated from an exponential distribution with a mean of 10, 

and 𝜀𝑖𝑗𝑡 is a normally independently distributed error 

component with a mean of 0 and a constant variance 

of σ2(σ = 0.1α).   

The generated seasonal demand pattern uses the following 

model: 

𝑑𝑖𝑗𝑡 = 𝑎1 + 𝑎2 + 𝑠𝑖𝑛
2𝜋(𝑡+𝑏)

𝑇
+ 𝜀𝑖𝑗𝑡        1 ≤ 𝑖 ≤ 𝑚,    1 ≤

𝑗 ≤ 𝑛,   1 ≤ 𝑡 ≤ 𝑇    (6) 

Where, α1 is a constant generated from an exponential 

distribution with a mean of 10, α2 is the amplitude of the 

sinusoidal curve (α2=0.5α1), b is a constant generated from a 

discrete uniform distribution ranging between 0 and T-1 to 

randomly vary the starting point of the demand pattern, and 

𝜀𝑖𝑗𝑡 is a normally independently distributed error component 

with a mean of 0 and a constant variance of σ2(σ=0.1α2).  

The experiment checks both patterns to ensure that 

demand in the first period is always greater than zero. This 

experimentation generates four distinct sets (of two hundred 

demand patterns each), one for each of the seasonal and 

constant demand patterns and once for each of the ten and 

twenty period horizons. Overall, 25600 instants were 

executed (128 runs times 200 instances per run). 

VI. RESULT AND DISCUSSION 

Table 1-4 are the cost analysis of the four rules, mPSO, SM, 

WW, GA, for DLSCOP. We can find the performance of 

mPSO is better than GA, WW, and SM. Meta-heuristics, GA 

and mPSO are greater than traditional heuristics WW and SM. 

mPSO will be better than traditional GA, especially in the 

complex condition, like as more items type, long period, and 

seasonal demand. The different of the four methodologies 

showed on figure 5, too. The relative performance is defined 

as the cost of mPSO is 1. The relative performance is 

calculated from the cost of SM, WW, and GA, divided the 

cost of mPSO. We can find the performance of mPSO is 

stable than other under different experimental factors. GA 

can find a superior solution in some condition but the stability 

is its major weakness. WW is performing better than SM in 

the stability. 

In the performing efficiency of mPSO, WW, SM, and GA, 

traditional rules (WW, SM) don’t need too much time to 

generate purchasing decision. If we can spend little time to 
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perform meta-heuristic, like as mPSO, the total cost can 

reduce significantly. In table 5, the performing time of mPSO 

and GA are comparing. Longest time for GA to have a 

decision is more than half hour. Performance time of mPSO 

can be saved more than 50%. Total average of the 

performance time of mPSO is 133 second is superior than 

312 second for GA. Furthermore, we can find the efficiency 

of mPSO is greater than GA.  

 

Table 1: the cost of mPSO, WW, SM and GA for DLSCOP for run 1 to 32 

run mPSO SM WW GA 

Average Std_dev Average Std_dev Average Std_dev Average Std_dev 

1 4204.21 243.926 5385.09 218.587 4302.65 251.388 4243.09 249.928 

2 4242.13 236.466 5440.33 162.481 4324.64 237.724 4254.26 228.974 

3 15008.39 764.452 20827.53 1179.129 15349.59 660.298 15027.65 1008.402 

4 15007.87 766.695 20827.09 1179.645 15343.52 658.308 14929.83 937.981 

5 8316.80 336.573 10730.08 310.908 8547.76 316.554 8812.06 338.067 

6 8449.40 377.844 10936.78 306.491 8693.82 381.734 8762.81 345.827 

7 28959.69 1186.702 39666.81 1293.979 29671.65 1451.616 29792.34 1187.411 

8 28902.29 1340.240 39624.24 1410.813 29453.30 1593.277 29570.14 1221.089 

9 4818.19 247.859 6007.08 193.938 4938.68 260.912 4950.33 243.394 

10 4965.26 269.651 6386.45 253.893 5119.23 296.940 4872.84 261.296 

11 15673.10 810.271 21408.61 1002.824 16055.09 709.683 15580.52 1008.507 

12 15469.35 753.618 21545.07 894.420 15813.10 578.830 15353.95 995.777 

13 9685.88 454.624 12218.15 486.572 10010.12 505.504 10694.51 461.826 

14 10520.36 610.502 13573.25 643.311 10939.78 666.847 10334.55 429.557 

15 30435.18 1396.928 41372.31 1369.864 30983.82 1534.640 31586.60 1334.748 

16 29451.52 1516.066 40548.62 1658.355 29980.95 1884.052 30320.15 1586.077 

17 4782.14 265.436 5851.69 127.657 4867.96 275.680 4800.63 234.889 

18 4731.95 244.167 5806.48 130.222 4822.39 260.929 4806.58 277.230 

19 17521.68 1194.885 24357.68 1168.467 17663.24 1225.287 17718.86 1070.192 

20 17545.39 1207.804 24326.61 990.735 17652.79 1195.060 17676.14 1211.647 

21 9389.70 330.752 11551.99 218.737 9648.57 337.020 10093.84 313.263 

22 9415.45 353.552 11620.47 225.259 9631.82 344.242 9978.38 374.420 

23 34672.88 1408.450 47341.95 1480.599 35256.46 1464.394 35770.49 1496.546 

24 34381.40 1465.590 46930.49 1657.835 35112.50 1500.161 35361.90 1514.410 

25 5427.34 223.587 6438.33 147.563 5554.53 235.177 5577.71 303.288 

26 5563.35 271.677 6783.07 248.030 5689.18 284.385 5534.48 283.168 

27 18358.38 1132.071 24730.72 1071.549 18531.50 1154.644 18495.10 1161.246 

28 18019.42 1157.575 24928.44 1054.643 18144.19 1109.625 18128.14 1148.703 

29 10694.87 408.402 12942.74 366.492 10921.26 430.345 12092.43 495.523 

30 11962.27 536.404 15101.25 643.510 12366.83 580.218 11869.49 408.792 

31 35712.83 1460.097 48365.86 1327.875 36518.18 1498.315 37507.50 1524.504 

32 35764.09 1540.170 48770.05 1719.380 36587.00 1530.044 36506.22 1669.630 
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Table 2: the cost of mPSO, WW, SM and GA for DLSCOP for run 33 to 64 

run mPSO SM WW GA 

Average Std_dev Average Std_dev Average Std_dev Average Std_dev 

33 5338.86 211.748 6106.01 64.488 5398.40 220.509 5423.53 205.864 

34 5371.52 215.223 6120.81 63.401 5419.48 212.175 5436.35 229.590 

35 20664.06 1209.978 28028.76 1151.579 20899.50 1312.891 20381.04 1236.820 

36 20403.93 1123.946 27711.24 1176.635 20703.72 1276.298 20412.56 964.856 

37 10620.45 327.693 12171.68 161.529 10750.87 342.670 11346.77 333.957 

38 10856.67 305.148 12503.99 156.283 10978.37 280.609 11270.89 318.779 

39 39805.83 1419.502 54147.25 1226.796 40557.20 1333.536 41116.07 1394.333 

40 40003.82 1536.620 54438.37 1446.888 40898.81 1338.398 41075.29 1674.002 

41 5973.88 221.287 6711.45 78.139 6084.91 244.007 6193.80 259.194 

42 6225.65 298.528 7232.61 212.645 6323.01 301.958 6141.95 266.227 

43 21279.23 1003.634 28514.61 940.640 21491.08 1072.439 21164.64 1116.843 

44 21177.76 1325.818 28715.29 1263.797 21464.70 1493.653 20700.09 1180.358 

45 12121.70 418.682 13949.10 427.620 12251.78 465.422 13394.80 530.511 

46 13545.30 636.906 16591.03 490.610 13812.99 665.521 13109.26 429.128 

47 41001.08 1568.610 55487.67 1634.586 41956.47 1447.391 43057.91 1537.334 

48 40980.18 1674.724 55964.49 1632.369 41834.85 1644.510 42176.24 1719.645 

49 5784.81 156.082 6158.04 37.639 5824.09 152.588 5909.50 193.225 

50 5761.98 168.551 6161.55 24.212 5801.78 165.479 5855.12 189.891 

51 23919.67 1219.772 32324.16 1290.071 24178.17 1104.478 24358.91 1316.220 

52 23860.48 1156.468 32154.20 1218.669 24078.98 1062.657 24219.57 1158.017 

53 11504.23 213.440 12295.36 99.232 11608.93 241.948 12405.11 332.677 

54 11562.34 226.808 12408.92 101.960 11664.50 233.045 12328.77 285.360 

55 46880.92 1824.874 62896.58 1801.293 47763.34 1713.718 49009.11 1548.116 

56 47329.80 1624.431 63542.15 1463.083 48270.61 1741.255 48502.61 1631.083 

57 6399.09 171.694 6757.17 70.827 6554.44 220.011 6704.26 210.844 

58 6668.67 254.259 7194.67 201.130 6775.48 313.594 6693.13 235.049 

59 24632.59 1146.013 33198.85 1203.915 24940.35 1097.090 24964.96 1358.360 

60 24747.62 1215.121 33443.19 1127.444 24964.19 1156.082 24937.61 1317.752 

61 12880.88 334.300 13688.25 303.985 13076.81 369.115 14801.04 465.514 

62 15049.37 561.101 16569.42 518.728 15268.21 568.882 14615.80 430.422 

63 48329.35 1732.627 64410.61 1797.590 49242.94 1836.464 50810.66 1873.500 

64 49072.90 1656.854 65855.42 1511.927 50037.73 1676.394 50375.23 1672.400 

Table 3: the cost of mPSO, WW, SM and GA for DLSCOP for run 65 to 96 

run mPSO SM WW GA 

Average Std_dev Average Std_dev Average Std_dev Average Std_dev 

65 8479.99 490.719 10845.68 389.301 8666.95 483.221 8917.87 401.904 

66 8406.00 405.613 10785.74 318.202 8593.16 414.283 8753.12 444.461 

67 30147.96 1408.207 41996.63 1616.801 30651.48 1085.451 30863.98 1710.801 

68 30150.85 1312.004 41869.58 1768.296 30637.65 1038.876 30525.98 1615.648 
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69 16594.61 583.168 21382.05 470.851 17115.21 573.816 19314.09 719.480 

70 16530.12 592.576 21377.00 495.429 17068.70 573.372 19134.75 683.025 

71 58210.60 2351.984 79626.47 3017.750 59153.66 2818.190 76467.52 2808.695 

72 58220.10 2351.983 79698.98 2595.591 59161.51 2815.894 71992.01 2228.632 

73 9696.82 415.540 12021.45 325.623 9896.22 383.077 10483.73 550.581 

74 9898.22 420.662 12261.95 341.095 10111.21 435.278 10282.52 506.079 

75 31318.28 1364.303 42676.05 1607.268 32079.32 1111.710 32520.05 1948.538 

76 31310.59 1465.641 43026.41 2095.250 32002.49 1229.793 31779.61 1712.183 

77 18917.49 624.336 23636.88 510.165 19455.82 628.464 23525.88 1047.718 

78 20717.02 794.687 26287.39 990.291 21483.08 849.018 23030.76 847.980 

79 60464.55 2293.601 81955.64 2213.240 61975.03 2914.617 81918.30 3199.701 

80 60624.61 2553.015 82451.94 2520.821 61947.22 3111.335 76299.63 2752.071 

81 9486.74 433.506 11606.57 271.581 9666.92 429.331 9998.38 443.206 

82 9538.40 473.930 11666.80 259.750 9709.66 485.316 9978.43 519.277 

83 35000.08 2191.047 48377.89 2065.591 35116.26 2127.350 36283.92 1973.224 

84 35345.74 2133.958 48688.66 1853.780 35488.98 2139.419 36103.72 2034.572 

85 18760.81 738.900 23081.82 563.534 19185.71 740.689 22140.21 865.985 

86 18853.83 622.235 23155.54 354.546 19291.77 585.359 21882.68 704.256 

87 68677.94 2847.362 94340.63 2737.113 70101.48 2706.656 86103.28 2876.716 

88 68671.66 2995.971 93823.38 3076.087 70022.61 3250.350 81827.14 2561.016 

89 10777.71 451.798 12863.57 231.641 11014.47 481.728 11796.10 650.083 

90 10860.56 480.405 12900.99 294.154 11055.92 473.174 11678.41 517.010 

91 36558.13 2047.332 49690.31 2066.744 36797.09 1989.972 37898.20 2130.499 

92 36017.46 2077.093 49238.05 2136.697 36270.42 2130.141 37778.30 2141.000 

93 21149.86 726.090 25397.22 521.402 21655.86 663.436 26688.11 1199.192 

94 22748.05 911.485 27812.98 796.115 23308.38 892.424 26150.99 1046.671 

95 71531.55 2661.933 96737.93 2719.638 73115.95 2756.772 91509.11 3897.814 

96 71163.41 3201.466 96592.83 3416.654 72955.65 3088.390 86150.29 2813.238 

Table 4: the cost of mPSO, WW, SM and GA for DLSCOP for run 97 to 128 

run mPSO SM WW GA 

Average Std_dev Average Std_dev Average Std_dev Average Std_dev 

97 10783.65 339.395 12223.78 90.772 10881.17 320.862 11311.72 428.952 

98 10669.41 372.306 12211.30 102.371 10762.41 362.132 11284.55 437.721 

99 40639.00 2232.031 55178.59 2067.912 41058.82 2573.527 41474.21 2166.271 

100 41283.20 2146.805 56082.62 1727.063 41826.45 2490.159 41268.90 2033.819 

101 21385.53 569.656 24371.96 326.353 21613.23 546.336 24863.67 812.066 

102 21339.69 475.732 24417.83 135.166 21580.05 480.275 24495.16 781.375 

103 79861.95 2725.942 108282.36 2780.542 81241.21 2479.940 94313.80 2706.804 

104 79781.24 2893.840 108280.55 2816.216 81148.57 2574.927 90838.82 2575.422 

105 11962.09 409.037 13405.19 119.756 12150.33 454.236 13115.53 548.725 

106 12133.66 441.161 13765.26 241.503 12262.61 470.858 13062.17 455.988 

107 42449.53 2374.335 56830.20 2112.421 42961.77 2671.267 43620.67 2214.805 
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108 42577.14 2486.357 57216.73 2336.890 43027.59 2690.258 42932.33 2128.930 

109 23581.45 530.813 26634.55 254.952 23860.05 534.574 29675.99 1022.618 

110 26256.44 1049.996 30967.13 724.652 26574.94 1071.833 29060.22 912.005 

111 81772.37 2835.619 110142.64 2939.330 83513.21 2659.112 99877.99 3474.340 

112 83319.88 3084.459 111737.69 5394.320 84881.69 2802.518 94631.78 2992.805 

113 11511.98 312.010 12308.42 86.861 11562.12 304.754 12423.51 542.170 

114 11511.98 312.010 12308.42 86.861 11562.12 304.754 12327.58 479.146 

115 47746.64 2272.960 64462.94 2495.828 48174.92 2186.466 49666.91 2384.461 

116 47746.64 2272.960 64462.94 2495.828 48174.92 2186.466 48939.06 2343.422 

117 22982.72 417.431 24602.52 48.060 23173.28 423.047 29217.27 1393.134 

118 23059.07 415.644 24608.48 42.101 23219.39 452.289 28100.29 1033.896 

119 94756.64 3517.391 126964.77 3654.952 96510.30 3454.178 108270.73 3201.210 

120 94540.40 2947.673 126543.72 4274.487 96212.11 2966.632 105036.25 3109.847 

121 12747.13 297.808 13503.61 96.892 13010.25 363.804 14425.46 752.796 

122 12822.53 338.602 13558.66 111.007 13133.59 436.065 14135.12 541.337 

123 49309.46 2078.178 65701.36 2429.791 49810.34 2026.629 51295.95 2458.176 

124 49337.67 2213.155 66050.06 2144.137 49830.56 2015.188 50481.63 2616.960 

125 25279.22 460.097 26842.00 239.240 25596.62 565.442 34056.11 1487.370 

126 27582.90 818.832 29759.80 773.725 27860.61 855.753 32853.17 1132.294 

127 96382.54 3382.199 128446.03 3086.746 98145.58 3332.065 112712.37 3637.629 

128 97948.74 3374.596 130515.11 3134.650 100048.98 3023.383 109285.52 3231.317 

Table 5: the performing time of mPSO and GA 

runs GA_time mPSO_time runs GA_time mPSO_time runs GA_time mPSO_time runs GA_time mPSO_time 

1 00:59 00:46 33 01:04 00:16 65 02:27 00:40 97 04:54 00:59 

2 01:05 00:53 34 01:13 00:19 66 02:33 00:46 98 05:14 01:12 

3 00:43 00:35 35 00:55 00:11 67 02:10 00:35 99 04:01 00:44 

4 00:48 00:08 36 01:08 00:13 68 02:19 00:36 100 03:24 00:50 

5 03:29 00:40 37 03:29 01:15 69 05:45 03:35 101 08:49 05:53 

6 05:15 00:58 38 05:56 01:58 70 06:43 04:17 102 11:27 07:19 

7 02:09 00:31 39 02:21 00:53 71 04:53 02:45 103 06:31 04:05 

8 02:53 00:43 40 03:55 01:21 72 04:30 03:10 104 07:33 04:44 

9 01:05 00:10 41 01:12 00:18 73 02:02 00:44 105 02:53 01:08 

10 01:30 00:18 42 03:15 00:35 74 02:48 01:09 106 06:57 01:51 

11 00:43 00:08 43 00:58 00:13 75 01:49 00:36 107 02:39 00:52 

12 01:28 00:13 44 02:27 00:23 76 02:39 00:49 108 04:49 01:14 

13 02:16 00:52 45 03:50 01:40 77 05:10 03:53 109 10:19 06:34 

14 05:29 02:21 46 24:37 05:04 78 25:51 08:19 110 26:26 18:12 

15 01:56 00:38 47 02:44 01:15 79 04:20 02:39 111 06:48 05:23 

16 05:53 01:40 48 14:19 03:21 80 10:13 05:59 112 28:17 13:02 

17 01:03 00:09 49 01:09 00:16 81 02:05 00:33 113 03:42 01:04 
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18 01:06 00:10 50 01:16 00:19 82 02:38 00:38 114 03:59 01:42 

19 00:55 00:07 51 00:56 00:13 83 02:12 00:28 115 02:49 00:59 

20 01:00 00:08 52 01:01 00:14 84 02:19 00:30 116 03:01 00:52 

21 02:09 00:38 53 03:10 01:18 85 06:13 02:43 117 10:57 06:09 

22 03:15 00:48 54 05:04 01:45 86 06:48 03:20 118 13:44 07:30 

23 02:06 00:30 55 02:50 00:54 87 04:57 02:11 119 05:49 04:20 

24 02:30 00:37 56 03:47 01:11 88 05:11 02:25 120 06:36 04:59 

25 01:00 00:10 57 01:10 00:18 89 02:36 00:37 121 03:22 01:08 

26 01:42 00:15 58 02:43 00:30 90 02:55 00:46 122 04:19 01:30 

27 00:55 00:08 59 00:57 00:13 91 02:16 00:31 123 02:44 00:51 

28 01:11 00:11 60 01:56 00:21 92 03:42 00:34 124 03:20 01:01 

29 02:16 00:46 61 04:29 01:35 93 05:42 03:04 125 12:07 08:33 

30 08:37 01:58 62 25:45 04:24 94 16:36 06:28 126 34:42 19:17 

31 01:57 00:35 63 02:38 01:10 95 05:12 02:33 127 10:25 06:35 

32 05:58 01:20 64 09:15 02:58 96 10:25 04:36 128 17:52 13:04 

         average 05:12 02:13 

 
Figure 5. the relative performance of mPSO, SM, WW, and GA for DLSCOP 
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